REPORT NO. 96-21

REUSABLE "CLIP-LOK" PALLET MIL-STD-1660 TESTS

Prepared for:
U.S. Army Armament Research, Development and Engineering Center
ATTN: AMSTA-AR-ESK
Rock Island, IL 61299-7300

Distribution Unlimited
U.S. ARMY

AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from Director, U.S. Army Defense Ammunition Center, ATTN: SIOAC-DEV, 3700 Army Depot Road, Savanna, IL 61074-9639.

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.

U.S. ARMY DEFENSE AMMUNITION CENTER VALIDATION ENGINEERING DIVISION SAVANNA, IL 61074-9639
 REPORT NO. 96-21

 REUSABLE "CLIP-LOK" PALLET MIL-STD-1660 TESTS

 REUSABLE "CLIP-LOK" PALLET MIL-STD-1660 TESTS
 TABLE OF CONTENTS

PART PAGE NO.

1. INTRODUCTION 1-1
A. BACKGROUND 1-1
B. AUTHORITY 1-1
C. OBJECTIVE 1-1
D. CONCLUSION 1-1
2. ATTENDEES 2-1
3. TEST PROCEDURES 3-1
4. TEST EQUIPMENT 4-1
5. TEST RESULTS 5-1
6. PHOTOGRAPHS 6-1
7. DRAWINGS 7-1

INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SIOAC-DEV), was tasked by the U.S. Army Armament Research, Development and Engineering Center (ARDEC) to conduct MIL-STD-1660, Design Criteria for Ammunition Unit Loads, tests on the reusable Clip-Lok pallet produced by Clip-Lok SimPak USA, Inc. Initial testing allowed for redesigns to improve the strength of the pallet in order to meet the test requirements of the MIL-STD-1660 criteria for shipment of ammunition loads.
B. AUTHORITY. This test was conducted IAW mission responsibilities delegated by the U.S. Army Armament, Munitions and Chemical Command (AMCCOM), Rock Island, IL. Reference is made to the following:

1. Change 4, 4 October 1974, to AR 740-1, 23 April 1973, Storage and Supply Activity Operation.
2. AMCCOM-R, 10-17, Mission and Major Functions of USADACS, 13 January 1986. C. OBJECTIVE. The objective of these tests was to determine if the Clip-Lok company could produce a pallet that would meet MIL-STD-1660 test requirements for shipment of ammunition.
D. CONCLUSION. The third design of the Clip-Lok pallet with the addition of a $3 / 4$-inch layer of plywood on top of the pallet deck and seven $3 / 4$-inch metal bands over top of the pallet clips was able to meet MIL-STD-1660 test requirements for shipment of ammunition and is recommended for U.S. Army (USA)-wide use on loads up to 4,000 pounds.

PART 2

MARCH - AUGUST 1996

ATTENDEES

Quinn D. Hartman	Director
General Engineer	U.S. Army Defense Ammunition Center
DSN 585-8992	ATTN: SIOAC-DEV
815-273-8992	3700 Army Depot Road
	Savanna, IL 61074-9639
Jerry H. Krohn	Director
Supervisory General Engineer	U.S. Army Defense Ammunition Center
DSN 585-8908	ATTN: SIOAC-DEV
815-273-8908	3700 Army Depot Road
	Savanna, IL 61074-9639
Thomas J. Michels	Director
Supervisory General Engineer	U.S. Army Defense Ammunition Center
DSN 585-8080	ATTN: SIOAC-DES
815-273-8080	3700 Army Depot Road
	Savanna, IL 61074-9639
Walter B. Holcombe	Commander
DSN 493-8204	U.S. Army Armament Research, Development
309-782-8204	and Engineering Center
	ATTN: AMSTA-AR-ESK
	Rock Island, IL 61299-7300
Steve Carlton	Clip-Lok SimPak USA
Regional Sales Manager	1 Dunwoody Park
$770-399-0437$	Suite 103
	Atlanta, GA 30338

TEST PROCEDURES

The test procedures outlined in this section were extracted from MIL-STD-1660, Design Criteria for Ammunition Unit Loads, 8 April 1977. This standard identifies nine steps that a unitized load must undergo if it is to be considered acceptable. The four tests that were conducted on the test pallets are summarized below.
A. STACKING TEST. The unit load was loaded to simulate a stack of identical unit loads stacked 16 feet high, for a period of one hour. This stacking load was simulated by subjecting the unit load to a compression weight equal to an equivalent 16 -foot stacking height. The compression load was calculated in the following manner. The unit load weight was divided by the unit load height in inches and multiplied by 192. The resulting number was the equivalent compressive force of a 16 -foot-high load.
B. REPETITIVE SHOCK TEST. The repetitive shock test was conducted IAW Method 5019, Federal Standard 101. The test procedure is as follows: The test specimen was placed on, but not fastened to, the platform. With the specimen in one position, the platform was vibrated at $1 / 2$-inch amplitude (1 -inch double amplitude) starting at a frequency of approximately 3 cycles per second. The frequency was steadily increased until the package left the platform. The resonant frequency was achieved when a $1 / 16$-inch-thick feeler gage momentarily slid freely between every point on the specimen in contact with the platform at some instance during the cycle or a platform acceleration achieved $1+/-0.1 \mathrm{Gs}$. Midway into the testing period, the specimen was rotated 90 degrees and the test continued for the duration. Unless failure occurred, the total time of vibration was two hours if the specimen was tested in one position and three hours for more than one position.
C. EDGEWISE ROTATIONAL DROP TEST. This test was conducted using the procedures of Method 5008, Federal Standard 101. The procedure for the edgewise rotational drop test is as follows: The specimen was placed on its skids with one end of the pallet supported on a beam 4-1/2 inches high. The height of the beam was increased if necessary to ensure that there was no support for the skids between the ends of the pallet when dropping took place, but was not high enough to cause the pallet to slide on the supports when the dropped end was raised for the drops. The unsupported end of the pallet was then raised and allowed to fall freely to the concrete, pavement, or similar underlying surface from a prescribed height. Unless otherwise specified, the height of drop for level A protection conforms to the following tabulation:

	DIMENSIONS OF		
GROSS WEIGHT (WITHIN RANGE LIMITS) (Pounds)	ANY EDGE, HEIGHT OR WIDTH (WITHIN RANGE LIMITS) (Inches)	HEIGHT OF DROPS ON EDGES Level A (Inches)	Level B (Inches)
$150-250$	$60-66$	36	27
$250-400$	$66-72$	32	24
$400-600$	$72-80$	28	21
$600-1,000$	$80-95$	24	18
$1,000-1,500$	$95-114$	20	16
$1,500-2,000$	$114-144$	17	14
$2,000-3,000$	Above 145-No limit	15	12
Above - 3,000		12	9

D. INCLINE-IMPACT TEST. This test was conducted by using the procedure of Method 5023, Incline-Impact Test of Federal Standard 101. The procedure for the incline-impact test is as follows: The specimen was placed on the carriage with the surface or edge to be impacted
projecting at least 2 inches beyond the front end of the carriage. The carriage was brought to a predetermined position on the incline and released. If it was desired to concentrate the impact on any particular position on the container, a 4-by 4-inch timber was attached to the bumper in the desired position before the test. No part of the timber was struck by the carriage. The position of the container on the carriage and the sequence in which surfaces and edges were subjected to impacts was at the option of the testing activity and depends upon the objective of the tests. This test was to determine satisfactory requirements for a container or pack, and, unless otherwise specified, the specimen was subjected to one impact on each surface that has each dimension less than 9.5 feet. Unless otherwise specified, the velocity at time of impact was 7 feet per second.

TEST EQUIPMENT

A. Compression Tester.

1. Manufacturer:
2. Platform:
3. Compression Limit:
4. Tension Limit:

Ormond Manufacturing
60 - by 60 -inches
50,000 pounds
50,000 pounds
B. Transportation Simulator.

1. Manufacturer:
2. Capacity:
3. Displacement:
4. Speed:
5. Platform:

> Gaynes Laboratory 6,000 -pound pallet
> $1 / 2$-inch amplitude
> 50 to 400 rpm
> 5 -by 8 -foot
C. Inclined Plane.

1. Manufacturer:
2. Type:
3. Grade:
4. Length:

Conbur Incline
Impact Tester
10 percent incline 12-foot

TESTRESULTS

During the approval process, four Clip-Lok pallets were tested with the MIL-STD-1660 criteria for shipment of ammunition loads. After each of the three pallet failures, Clip-Lok SimPak USA, Inc. made alterations to the pallet designs based on the performance and mode of failure during the testing. Two additional partial tests were also performed in order to assess the viability of potential modifications using previously tested pallets.
A. Test 1. Clip-Lok pallet design submission No. 1.

Date:
Weight:
Length:
Width:
Height:
Configuration:

14 March 1996
3,110 pounds
48-1/4 inches
40-1/4 inches
50-1/2 inches
24 clips on pallet box, no metal banding, loaded with 105 mm C 445 ammunition boxes

1. Compression Test. The test pallet was compressed with a load force of 11,825 pounds for 60 minutes. No damage was noted as a result of this test.
2. Repetitive Shock Test. The test pallet was vibrated 90 minutes at 200 RPM in the longitudinal orientation and 90 minutes at 190 RPM in the lateral orientation. No damage was noted as a result of this test.
3. Edgewise Rotational Drop Test. The test pallet was edgewise rotationally dropped from a height of 24 -inches on the longitudinal and lateral drops. During the longitudinal drops, three clips fell off of the pallet box during the first drop and four clips fell off during the fourth drop. No clips fell off during the lateral drops. Results from this testing indicated that two clips along the long side of the pallet base was going to be insufficient to prevent the pallet base from bowing.
4. Incline-Impact Test. The test pallet was incline-impacted on all four sides from an incline distance of 8 -feet. No damage or loss of clips was noted during this test.
5. Post Test Inspection. After the completion of MIL-STD-1660 testing, the pallet was disassembled and inspected for additional damage. Additional damage noted included significant wear to the bottom of the pallet skids, all six skid tips were broken off at the edge of the pallet skid post, and the pallet deck was cracked at the edge of the pallet around one of the middle skid posts. The pallet was rejected primarily on the fact that the clips fell off during the edgewise rotational drop testing.
B. Test.2. Clip-Lok pallet design submission No. 2.

Date:	$22-23$ April 1996
Weight:	3,010 pounds
Length:	$48-1 / 4$ inches
Width:	$40-1 / 4$ inches
Height:	$50-1 / 2$ inches
Configuration:	28 clips on pallet box, no metal banding, loaded with 105 mm
	C445 ammunition boxes

1. Compression Test. The test pallet was compressed with a load force of 11,445 pounds for 60 minutes. No damage was noted as a result of this test.
2. Repetitive Shock Test. The test pallet was vibrated 90 minutes at 250 rpm in the longitudinal orientation and 90 minutes at 220 rpm in the lateral orientation. During the initial shaker table speed adjustments, two clips fell off of the pallet. The clips were replaced and testing continued
3. Edgewise Rotational Drop Test. The test pallet was edgewise rotationally dropped from a height of 24 -inches on the longitudinal and lateral drops. During the second drop (lateral), one of the upper corner clips (at impact end) and top edge clip (at impact end) fell off of the pallet. After inspection, one of the clips was noted to have been permanently deformed and was
replaced before testing continued. During the fourth drop (lateral), one of the short side bottom edge clips (at impact end) fell off during the drop. No damage or loss of clips was noted during the longitudinal drops.
4. Incline-Impact Test. The test pallet was incline-impacted on all four sides from an incline distance of 8 -feet. No damage or loss of clips was noted during this test.
5. Post Test Inspection. After the completion of MIL-STD-1660 testing, the pallet was disassembled and inspected for additional damage. No additional damage was noted; however, the pallet was rejected due to the loss of the clips during the repetitive shock and edgewise rotational drop testing.
C. Test 3. Clip-Lok pallet design submission No. 2, engineering modification test.

Date:
Weight:
Length:
Width:
Height:
Configuration:

23 April 1996
3,010 pounds
48-1/4 inches
40-1/4 inches
$50-1 / 2$ inches
28 clips on pallet box, four $3 / 4$-inch metal bands added to pallet (see photos in Part 6), loaded with 105 mm C445 ammunition boxes

1. Edgewise Rotational Drop Test. The test pallet was edgewise rotationally dropped from a height of 24 -inches on the longitudinal and lateral drops. No damage or loss of clips was experienced during the drop tests after the metal banding was added to the pallet.
D. Test 4. Clip-Lok pallet design submission No. 3.

Date:
Weight:
Length:
Width:
Height:
Configuration:

26 July 1996
4,335 pounds
48-1/4 inches
40-1/4 inches
50-1/2 inches
28 clips on pallet box, four $3 / 4$-inch metal bands added to pallet, loaded with 30 M548 containers

1. Compression Test. The test pallet was compressed with a load force of 16,565 pounds for 60 minutes. No damage was noted as a result of this test.
2. Repetitive Shock Test. The test pallet was vibrated 90 minutes at 135 rpm in the longitudinal orientation and 90 minutes at 140 pm in the lateral orientation. Approximately 60 minutes into the longitudinal orientation, one of the top clips broke. The clip was replaced and an additional $3 / 4$-inch band was placed horizontally around the pallet midway between the side clips. The longitudinal orientation was restarted for an additional 90 minutes. No additional problems were experienced during the repetitive shock test.
3. Edgewise Rotational Drop Test. The test pallet was edgewise rotationally dropped from a height of 12 -inches on the longitudinal and lateral drops. During the first drop (longitudinal), both middle side clips disengaged from the pallet. During the second drop (lateral), the middle containers on either side of the skid post broke through the deck plywood (see photos in Part 6). The pallet was rejected at this point and no additional testing was conducted.
E. Test.5. Clip-Lok pallet design submission No. 3.

Date: 29 July 1996
Weight: $\quad 4,305$ pounds
Length: 48-1/4 inches
Width: 40-1/4 inches
Height: $\quad 50-1 / 2$ inches
Configuration: $\quad 28$ clips on pallet box, seven $3 / 4$-inch metal bands added to pallet (see photos in Part 6), $3 / 4$-inch layer of plywood placed on top of pallet base prior to loading, loaded with 24 M548 containers

1. Compression Test. The test pallet was compressed with a load force of 16,530 pounds for 60 minutes. No damage was noted as a result of this test.
2. Repetitive Shock Test. The test pallet was vibrated 90 minutes at 165 RPM in the longitudinal orientation and 90 minutes at 186 RPM in the lateral orientation. No damage or loss of clips was noted
3. Edgewise Rotational Drop Test. The test pallet was edgewise rotationally dropped from a height of 12 -inches on the longitudinal and lateral drops. The skids were noted to have bent during the drops; however, no permanent damage or loss of clips was noted.
4. Incline-Impact Test. The test pallet was incline-impacted on all four sides from an incline distance of 8 -feet. No damage or loss of clips was noted during this test.
5. Post Test Inspection. After the completion of MIL-STD-1660 testing, the pallet was disassembled and inspected for additional damage. No damage was noted. The Clip-Lok pallet, design No. 3 , with the additional layer of plywood and the $3 / 4$-inch metal banding was considered to have successfully passed MIL-STD-1660 testing.
F. Test 6. Clip-Lok pallet design submission No. 3

Date:	23 August 1996
Weight:	2,985 pounds
Length:	48-1/4 inches
Width:	40-1/4 inches
Height:	50-1/2 inches
Configuration:	28 clips on pallet box, seven $3 / 4$-inch metal bands added to pallet (see photos in Part 6), original pallet base configuration (no additional layer of $3 / 4$-inch plywood), loaded with 105 mm C445 ammunition boxes

1. Edgewise Rotational Drop Test. An additional edgewise rotational drop test was conducted at 3,000 pounds without the additional layer of $3 / 4$-inch plywood to determine if the plywood would only be needed for pallet weights in excess of 3,000 pounds. The test pallet was edgewise rotationally dropped from a height of 15 -inches on the longitudinal and lateral drops. After completion of the test, the pallet deck was noted to have deformed along one of the
grooves in the pallet deck that was added for storage of the clips in the collapsed shipping mode. Deformation of the base allowed one of the sides to shift approximately $1 / 2$-inch relative to the top of the pallet box. Had the load consisted of a commodity that provided more point loading than the 105 mm boxes; i.e., M548 containers, the pallet deck would have probably cracked. Due to the marginal results of this test, the $3 / 4$-inch layer of plywood was determined to be mandatory on all load weights for this pallet as well as the seven $3 / 4$-inch metal bands.

PART 6

PHOTOGRAPHS

	U.S. ARMY DEFENSE AMMUNITION CENTER - SAVANNA, IL	
PHOTO NO. A0317-SCN-96-134-2623. This photograph shows an undamaged clip in the foreground and the deformed clip in the background.		

DRAWINGS

MANUFACTURER'S DRAWINGS

UNITIZATION PROCEDURES

UNITIZATION PROCEDURES FOR PaLLET boX PACKING OF RETROGRADE AMMUNITION

VARNING

THIS DRAMING IS DNLY AUTHORIZED FOR RETROGRADE OPERATIONS, WHEN SPEEIFIC Packing procedures have been reduested in hriting and PROYIDED BY COMMANDER, U.S. ARMY INDUSTRIAL OPERATIONS COMMAND, ATTN: AMSTA-AR-ESK, ROCK ISLAND, IL 61299-7300, FOR SPECIFIC APPENDIX APPROYAL AND COMPETENT AUTHORITY APPROVAL (EAA).

INDEX

ITEM
PALLET UNIT A $\ldots \ldots .$.
DUNNAGE DETAILS
PALLET UNIT B CLIP-LOK RIAGEGI

REVISION

REVISION NO. 3. DATED JNE 1996, CONSISTS OF:

1. deleting pallet unit a.
2. renaming pallet unit b to pallet unit a.
3. ADOING GENERAL NOTE PERMITTING CONTINUED USE OF EXISTING PALLET LNIT A STOCKS.
4. Changing $2^{\circ} \times 8^{\circ}$ pieces in base assembly to 2" $\times 4^{*}$
5. ADOING CLIP-LOK PALLET BOX.
6. CHANGING ADORESS IN WARNING.

LOAD STRAP, $1-1 / 4^{\circ} \times .035^{\circ}$
OR . $031^{\circ} \times 15^{-6}$ LONG STEEL STRAPPING (2 REOO) SEE GENERAL NOTES * 0° AND -F. thread theu pallet strap slot.

SEAL FOR STRAPPING. CG REOD I PER STRAP
CRIMP EACH SEAL WITH
TWO PAIR OF NOTCHES. TWO PAIR OF NOTCHES
$40^{*} \times 48^{\circ}-$
Pallet.
TOP HOAIZONTAL STRAP
1-1/4" $\times .035^{\circ}$ OR .031* $\times 15^{\prime}-2^{*}$ LONG STEEL STRAPPING (1 REOD). SEE GENERAL NOTES " 0 " AND " F "

BASE ASSEMBLY (। REOD). SEE THE "COVER/BASE ASSEMBLY" detail on page 3. nail to PALLET W/G-6d NAILS

- TIEDOWN STRAP, $1-1 / 4^{*} \times$.035* OR .031*× 14'-2* LONG STEEL STRAPPING (2 REDO) SEE GENERAL NOTES "D* AND "F"
- COVER ASSEMBLY (1 REOO)

SEE THE COVER/BASE
ASSEMBLY* DETAIL ON PAGE 3.

- FASTEN HORIZONTAL ANO TIEDOWN STRAPS TO STRAPPING bOARDS AND LOAD STRAPS TO COVER AND BASE ASSEMBLIES w/ STAPLES AT EACH LOCATION (24 STAPLES).

BOTTOM HORIZONTAL STRAP. 1-1/4* X .035* OR .031* X 15'-8* LONG STEEL STRAPPING (1) REOD). SEE GENERAL NOTES "0* AND *F"

- END ASSEMBLY (2 AEOD) SEE THE "END ASSEMBLY" detail on page 4
- SIDE ASSEMBLY (2 REOD). SEE the "SIDE ASSEMELY" dETAIL ON PAGE 4. NAIL TO CORNER PIECES OF THE ENO ASSEMBLIES W/4-6d nails at each location.

PALLET UNIT A

UNIT DATA

REIROGRADE AMMUNITION INSIOE BOX $\ldots \ldots$
OUNNAGE
PALLET

BILL OF MATERIAL (UNIT A)		
LUMBER	LINEAR FEET	BOARD FEET
$2^{\prime \prime} \times 4^{\prime \prime}$	57.16	38.11
NAILS	NO. REOD	POUNDS
$6 d\left(2^{\circ}\right)$	117	0.69
$10 \mathrm{~d}\left(3^{\circ}\right)$	64	0.98

PALLET, 40* $\times 48^{*} \ldots \ldots$. . . 1 REOO - . . - 80 LBS STEEL STRAPPING, $1-1 / 4^{*}-90.17^{\circ}$ REOO - - -13.66 LBS SEAL FOR $1-1 / 4^{*}$ STRAPPING - - 6 REOO NIL PLYWOOD, $3 / 4^{*}$ - - - 69.58 SO FT REOD - - 143.51 LBS STAPLE. $1-17 / 32^{\prime \prime} \times 3 / 4^{\circ} \ldots 24$ REDO NIL

GENERAL NOTES

a. THIS dOCument has been prepared and issued in ACCORDANCE WITH AR $740-1$, ANO AUGMENTS TM $743-200-1$ (CHAPTER 5) ANO CONFORMS TO MIL-STO-1660
B. OIMENSIONAL LUMBER SPECIFIED THROUGHOUT THE DRAWING IS OF NOMINAL SIZE. FOR EXAMPLE, $2^{\prime \prime} \times 4^{\circ}$ MATERIAL IS ACTUALLY $1-1 / 2^{*}$ THICK By $3-1 / 2^{*}$ WIDE.
6. UNLESS OTHERWISE SPECIFIED. A MANUFACTURING TOLERANCE OF + OR - 1/4 IS ALLOWED ON ALL OIMENSIONS. AL THOUGH A + OR - $1 / 4^{*}$ TOLERANCE IS allowed, all dimens ional lumber members in a set, SUCH AS VERTICAL PIECES IN AN END ASSEMBLY, MUST BE WITHIN $1 / B^{\prime \prime}$ OF THE SAME LENGTH.
0. WHEN APPLYING ANY STRAP, CARE MUST BE EXERCISED TO ASSURE THAT THE END OF THE STRAP ON THE UNDERSIDE OF THE JOINT EXTENDS AT LEAST G* BEYONO THE SEAL THE EXTRA MINIMUM LENGTH OF STRAP IS REQUIRED TO PERMIT SUBSEOUENT TIGHTENING OF LODSENED STRAPPING RETENSIONING CAN BE ACCOMPLISHED WITHOUT REPLACING STRAPPING OR SPLICING STRAPPING THROUGH THE USE OF A MANUAL OR PNEUMATIC FEEDWHEEL TYPE TENSIONING TOOL, AS MANUFAETURED BY SEVERAL COMPANIES, AND THE application of one adoitional seal.
E. IN ORDER TO OBTAIN COMPACT AND SOUND UNITS, ALL STRAPS SHALL BE LOCATED IN PROPER ALIGNMENT ANO TENSIONED UNTIL THEY CUT INTO THE EDGE OF THE COVER ASSEMBLY AND THE PALLET OECK. AFTER TENSIONING, ALL STRAPS WILL BE SECURED USING ONE SEAL AND TWO PAIR OF NOTCHES PER SEAL
F. INSTALL EACH HORIZONTAL. LOAD. AND TIEDOWN STRAP TO BE LOCATED AS SHOWN. HORIZONTAL STRAPS MUST BE TENSIONED AND SEALED PRIOR TO THE APPLICATION OF TIEDOWN AND LOAD STRAPS. LOAD STRAPS MUST BE TENSIONED AND SEALED AFTER THE HORIZONTAL STRAPS AND PRIOR TO THE TIEDOWN STRAPS
G. Pallet unit details are based on the maximum ALLOWABLE OIMENSIONS OF THE PALLET UNIT. THE HEIGHT OF THE SIDE AND END ASSEMELIES MAY BE SHORTENED ACCORDING TO THE SIZE AND WEIGHT OF THE RETROGRADE AMMUNITION ITEMS INSIDE
H. packaged retrograde ammunition must contact the SIDE AND END ASSEMBLIES. FIBERBOARD LINERS SHALL BE USED FOR UNPACKAGED RETROGRADE AMMUNITION TO PREVENT CONTACT WITY THE SIOE AND END ASSEMBLIES FILLERS SUCH AS PLYWOOD. FIBERBOARD, HONEYCOMB FILLER, FOAM CUSHIONING MATERIAL, OR HARDBOARD SHALL BE adoed as mequireo to obtain a tight pack FOR PROCEDURES FOR A SPECIFIC ITEM REFER TO THE APPLICABLE APPENOICES.
J. THE STYLE 1 PALLET DELINEATED IN THE OETAIL AT LEFT NEED NOT HAVE CHAMFERS AS SPECIFIED WITHIN MILITARY SPECIFICATION MIL-P-15011 WHEN USED FOR THE UNITIZATION OF ITEMS COVERED BY THIS APPENDIX
K. REGAROLESS of the ouantity of retrograde ammunition TO BE PALLETIZED. THE TOTAL VEIGHT DF A FULLY LOADED PALLET UNIT WILL NOT EXCEED 3.000 POUNOS FOR PALLET UNIT A AND 4.000 POUNDS FOR PALLET UNIT B. WHEN THE TOTAL WEIGHT OF A FULLY LOADED PALLET UNIT EXCEEDS THESE WEIGHTS, AMMUNITION MUST BE REMOVED. AND FILLER SUCH AS EMPTY BOXES. FIBERBOARD. HARDBOARD. HDNEYEOHE FILLER, FOAM CUSHIONING MATERIAL. PLYMOOD, OR WOOD MUST BE SUBSTITUTED.
L. pallet boxes constructed in accordance with the 19-48-4233 SERIES APPENDICES AND THE BASIC procedure may continue to be used, but no new pallet boxes will be fabricated in accorodance with THE SUPERSEDED PROCEDURE.

COVER PIECE, PLYYOOD, 3/4*
40* X 48* (1 REOD). NAIL
TO LATERAL PIECES W/5~10
NAILS AT EACH LOCATION
NAIL TO LONGITUOINAL PIECES
W/7-IOd NAILS AT EACH
location.

CDVER/BASE ASSEMBLY
(2 REOO)

MATERIAL SPECIFICATIONS

PALLET - -: MIL SPEC MIL-P-15011; 4-WAY ENTRY, STYLE 1. TYPE I, CLASS 1.
LUMBER … . . . - : SEE TM 743-200-1 (DUNNAGE LUMBER) AND FED SPEC MM-L-751.

NAILS … FEO SPEC FF-N-IOS; COMMON.
PLYWOOD -. . . . - : COMMERCIAL ITEM DESCRIPTION
A-A-55057, TYPE A, CONSTRUCTION AND
INDUSTRIAL PLYYOOD, INTERIOR WITH EXterior glue, grade c-o. if
SPECIFIED GRADE IS NOT AVAILABLE, A BETTER INTERIOR OR AN EXTERIOR GAADE
MAY BE SUBSTITUTED. may be substituted
HARDBOARD - - - - : ANSI/AHA A135.4, CLASS 1.
HONEYCOMB
FILLER -: FIBERBOARO, FALING PAPER WEIGHT 69 POUNDS 1,000 SOUARE FEET, CORE PAPER WEIGHT 33 POUNDS 1,000 SOUARE FEET, $1 / 2^{*}$ CORE CELL CENTERS, INTERNATIONAL HONEYCOMB CORP (OR EOUAL).
STRAPPING, STEEL - -: ASTM 03953; FLAT STRAPPING, TYPE 1 , HEAVY DUTY, FINISH B (GRADE 2), SIZE 3/4* OR 1-1/4* X .035* DR .031*.
SEAL, STRAP ——— ASTM O3953: CLASS H, FINISH B (GRADE 2) DOUBLE NOTCH TYPE, STYLE I, II, OR IV).

FIBERBOARD - - - - -: ASTM 04727.
STAPLE … FED SPEC FF-N-105: $1-17 / 32^{\circ}$ CROWN WIOTH X $3 / 4^{\prime \prime}$ LEG LENGTH FOR $1-1 / 4^{\prime \prime}$ STRAPPING, TYPE III. STYLE 3
FOAM CUSHIONING
MATERIAL - FED SPEC PPP-[-1752, TYPE I, CLASS 2 , GRADE A OR B. OR COMMERCIAL EQUIVALENT

END ASSEMBLY
(2 REOD)

SIDE ASSEMBLY
(2 REOD)
PAGE 4

$\begin{aligned} & \text { RETROGRADE } \\ & \text { QUNNAGE } \\ & \text { PALLET BOX } \end{aligned}$	AMMUNITION INSIDE BOX \ldots. . -	$\begin{array}{r} 3.754 \mathrm{LBS} \\ 10 \mathrm{LBS} \\ 236 \mathrm{LBS} \end{array}$
	TOTAL WEIGHT CUBE - -	$\begin{array}{r} 4.000 \text { LBS } \\ 55.8 \mathrm{CU} \mathrm{FT} \end{array}$

NOTES

1. SOLRCE OF SUPPLY: THE CLIP-LOK REFERENCE NLMBER

RIAGEEI HAS BEEN TESTED UNOER MIL-STO-16EO AND
APPROVED FOR USE. THIS PALLET BOX CAN BE
OBTAINED FROM CLIP-LOK SIMPACK USA. INE.,
TELEPHONE 800-448-CLIP
2. OTHER VENDORS' PALLET BOXES MAY BE OUALIFIED FDR USE

GY SUBMITTING SAMPLE BOXES TO THE DEFENSE AMMUNITION
CENTER, 3700 ARMY OEPOT ROAD. SAVANNA, IL $61074-9639$
CONTACT THE PACKAGING OFFICE, AMSTA-AA-ESK, ROCK ISLAND.
IL - TELEPHONE $309-782-8204$ OR THE VALIDATION ENGINEERING
division, sioac-dev, savanna, il - TElephone 815-273-8929

STACKING FOR COLLAPSED CLIP-LOK BOX

COLLAPSED BOX

SPECIAL NOTES:

1. The above drawing will be stenciled on the bottom support piece.
2. AN ARROW WITH UP WILL BE STENCILED ON THE SIDE PIECES AS SHOWN tO ENSURE THE STACKING slots are on top
